# Chemical Evolution of a Nitrogenase Model. VIII. Ferredoxin Model Compounds as Electron Transfer Catalysts and Reducing Agents in the Simulation of Nitrogenase and Hydrogenase Reactions

# Kazuo Tano and G. N. Schrauzer\*

Contribution from the Department of Chemistry, The University of California, San Diego, Revelle College, La Jolla, California 92037. Received January 31, 1975

Abstract: Ferredoxin model compounds, i.e., anions of the type  $[Fe_4S_4(SR)_4]^{z-}$  (z = 2-4) significantly accelerate the transfer of electrons from reductants such as  $S_2O_4^{2-}$  or  $BH_4^-$  to molybdothiol catalysts, whose nitrogenase-like chemical behavior is now well established. New experimental data are presented which demonstrate that the reduced ferredoxin-like cluster complexes can be employed as stoichiometric reducing agents for the molybdothiol catalyzed reduction of  $C_2H_2$  to  $C_2H_4$ . In the absence of reducible substrate,  $H_2$  is evolved under these conditions, both by a molybdenum- and an iron-dependent pathway. The iron-dependent  $H_2$  evolution is not associated with species  $[Fe_4S_4(SR)_4]^{z-}$ . Other as yet unidentified mercaptoiron sulfides appear to be the active components in these systems. The most active  $H_2$ -evolving systems contain  $Fe^{2+}$ ,  $S^{2-}$ , and  $RS^-$  in the molar ratios of 1:2:6.

It is now well established that complexes of oxomolybdate ions with thiol ligands simulate the molybdenum active site of nitrogenase (N<sub>2</sub>-ase), and that anions of ferredoxin model compounds of the type  $[Fe_4S_4(SR)_4]^{z-}$  (z = 2-4) are efficient electron transfer catalysts for the conversion of the molybdothiol complexes into the active reduced form.<sup>1</sup> In the last paper of this series<sup>2</sup> we have demonstrated, for example, that systems containing Mo, Fe, S<sup>2-</sup>, and  $RS^-$  in proportions similar to those observed in  $N_2$ -ase holoenzyme may be used for model studies of the reduction of typical N<sub>2</sub>-ase substrates. In the present paper we report further details on the reactions of these systems with acetylene as the substrate. Functional N<sub>2</sub>-ase is known to reduce the protons of the medium to yield  $H_2$  in the absence of added reducible substrates.<sup>3</sup> This reaction has thus far not been duplicated in the model systems. We will show that H<sub>2</sub> evolution can be demonstrated and that  $H_2$  is formed by both molybdenum- and iron-dependent mechanisms. The latter observation prompted us to conduct experiments with the aim of duplicating some of the reactions of bacterial hydrogenases as well. The known hydrogenase enzymes have been shown to contain Fe, S<sup>2-</sup>, and protein-S<sup>-</sup> groups,<sup>4</sup> but to date no satisfactory model systems for these important enzymes have been described. Evidence will be presented for  $H_2$  evolution in systems containing Fe,  $S^{2-}$ , and  $RS^{-}$  as the sole active components. Although these systems did not yet function very efficiently, the present study demonstrates the existence of unstable mercaptoiron sulfide complexes capable of reducing protons to hydrogen. Our work thus might lead to the eventual development of functional hydrogenase systems, once the nature of the species catalyzing  $H_2$ evolution is elucidated. Both tasks may prove to be very difficult, however, in view of the multitude of possible reactions and equilibria in  $Fe-S^{2-}-RS^{-}$  systems.

Model Systems of N<sub>2</sub>-ase Employed. The molybdenum catalyst employed throughout this study consisted of the binuclear oxo-bridged Mo<sup>5+</sup> complex of L(+)-cysteine (complex I). The ferredoxin model compounds possess an idealized "cubane" structure<sup>5-7</sup> as shown for the dianion in Figure 1. The alkyl-substituent R in the anions  $[Fe_4S_4(SR)_4]^{z-}$  was chosen to be the *n*-propyl group, primarily to prevent possible interference in the assay for  $C_2H_4$  during  $C_2H_2$  reduction experiments. The Fe<sub>4</sub>-cluster complexes undergo partial decomposition with hydrocarbon formation under reducing conditions; if  $R = n-C_3H_7$ , the

Journal of the American Chemical Society / 97:19 / September 17, 1975

products of decomposition are propylene ( $C_3H_6$ ) and propane ( $C_3H_8$ ), whose gas-chromatographic retention times are sufficiently different from those of  $C_2$  hydrocarbons. As in the past, we shall refer to the active reduced form of the catalyst as Mo<sup>red</sup> and to the oxidized derivatives thereof as Mo<sup>ox</sup>. All experiments were performed in aqueous methanolic solutions containing pH 9.6 borate buffer. The use of this solvent system was preferred over water in view of the instability of the ferredoxin model compounds in an aqueous medium. Since ATP decomposes the mercaptoiron sulfides as well, all experiments were run in its absence. The omission of ATP is of no consequence for the aims of this study.

The catalytically active species  $Mo^{ox}$  and  $Mo^{red}$  are generated from complex I under the reaction conditions chosen. We have shown previously<sup>1</sup> that both are mononuclear oxomolybdate-cysteine complexes of possible structure 1 and 2.



Mo<sup>red</sup> is most probably a complex of cysteine with the highly reactive  $Mo^{4+}$ .  $Mo^{ox}$  contains molybdenum either in the +5 or +6 state of oxidation. The stationary concentrations of  $Mo^{red}$  and  $Mo^{ox}$  are low due to the tendency of mononuclear oxomolybdate ions to form catalytically inactive oxobridged dimers.<sup>1</sup>

## Results

Acetylene Reduction. The addition of salts of the anions  $[Fe_4S_4(SR)_4]^{2-}$  to solutions containing complex I and excess  $S_2O_4^{2-}$  leads to a substantial increase in the rate of reduction of Mo<sup>ox</sup> to Mo<sup>red</sup>, as evidenced by the up to 3000-fold enhancement of the rate of  $C_2H_2$  reduction. Since the mercaptoiron sulfide clusters are unstable under the reaction conditions, slowly decomposing into colloidal iron sulfides or iron mercaptides, it was necessary to determine whether the accelerating effects observed were due to the



Figure 1. Model systems employed.

added intact cluster anions or their decomposition products. A "minimum component" study, whose results are summarized in Table I, indicates that ferrous ion and iron mercaptides are essentially inactive; colloidal iron sulfide showed some activity, but the most active system resulted only if all components were present and the solutions were homogeneous. Such systems remain functional for about 40 hr. They are initially homogeneous, but after 40 min of reaction deposit increasing amounts of iron sulfides, which, however, do not affect the course of the molybdenum dependent C<sub>2</sub>H<sub>2</sub> reduction to C<sub>2</sub>H<sub>4</sub>. Nevertheless, unless specified, all yields quoted in the figures and tables refer to homogeneous or essentially homogeneous reaction systems during the first 40-60 min of reaction. Table I also shows that the yields of  $C_2H_4$  in the complete system (no. 17) with chemically synthesized  $[Fe_4S_4(SR)_4]^{2-}$  instead of the equivalent amount of the same species generated in situ (no. 16) is about the same.

Table I. Reduction of  $C_2H_2$  by Components of the Nitrogenase Model Systems<sup>a</sup>

|     |                                                                                        | Yields of<br>60 min<br>Absolute | C <sub>2</sub> H <sub>4</sub> after<br>reaction |  |
|-----|----------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|--|
| No. | System                                                                                 | $(\mu mol)$                     | Relative                                        |  |
| 1   | $LiS-n-C_{3}H_{2}, S_{2}O_{4}^{2}$                                                     | 0                               | 0                                               |  |
| 2   | 1+ complex I                                                                           | Trace                           | Trace                                           |  |
| 3   | $Li_{2}S + S_{2}O_{4}^{2}$                                                             | 0                               | 0                                               |  |
| 4   | 3 + complex I                                                                          | 0.02                            | 0.6                                             |  |
| 5   | $FeC1_{3}, S_{2}O_{4}^{2-*}$                                                           | Trace                           | Trace                                           |  |
| 6   | 5 + complex I                                                                          | Trace                           | Trace                                           |  |
| 7   | $LiS-n-C_{3}H_{7}, S_{2}O_{4}^{2-}, Li_{2}S$                                           | Trace                           | Trace                                           |  |
| 8   | 7 + complex I                                                                          | 0.06                            | 2.1                                             |  |
| 9   | $1 + \text{FeCl}_3$                                                                    | Trace                           | Trace                                           |  |
| 10  | 9 + complex I                                                                          | 0.07                            | 2,4                                             |  |
| 11  | $Li_2S$ , $FeCl_3 + S_2O_4^{2}$                                                        | 0.04                            | 1.2                                             |  |
| 12  | 11 + complex I                                                                         | 0.90                            | 30.5                                            |  |
| 13  | $LiS-n-C_{3}H_{7}$ , $FeCl_{3} + S_{2}O_{4}^{2}$                                       | Trace                           | Trace                                           |  |
| 14  | 13 + complex I                                                                         | 0.07                            | 2.4                                             |  |
| 15  | $LiS-n-C_3H_7$ , $Li_2S$ , $FeCl_3$ , $S_2O_4^2$                                       | 0.07                            | 2.4                                             |  |
| 16  | 15 + complex I ("complete system")                                                     | 3.4                             | 100.0                                           |  |
| 17  | 16, but with equivalent amounts of<br>authentic $[N(C_4H_9)_4^+]_2[Fe_4S_4(SR)_4]^2^-$ | 3.2                             | 94.1                                            |  |

<sup>a</sup>Where indicated, reaction solutions contained 0.48 mmol of LiS-n-C<sub>3</sub>H<sub>7</sub>, 0.16 mmol of Li<sub>2</sub>S, and 0.16 mmol of FeCl<sub>3</sub>, with or without complex I (0.008 mmol), in a total reaction volume of 2 ml: solvent, water-CH<sub>3</sub>OH (1:1, by volume); buffer, 0.2 F pH 9.6 borate; reaction temperature, 27°.



Figure 2. Dependence of the rate of  $C_2H_2$  reduction by complex I on the concentration of  $[Fe_4S_4(SR)_4]^{2-}$ , generated in situ. Reaction solutions contained, in a total volume of 4 ml: complex I, 0.008 mmol;  $S_2O_4^{2-}$ , 0.3 mmol; and the amounts of mercaptoiron sulfide as indicated by the Fe/Mo ratios. Solvent was a 1:1 mixture of CH<sub>3</sub>OH with 0.2 *F* pH 9.6 aqueous borate buffer. The initial  $p_{C_2H_2}$  was I atm; the  $C_2H_4$ yields were determined after 20 min of reaction at 27°.



**Figure 3.** Time dependence of the yield of  $C_2H_4$  from  $C_2H_2$  in a system containing complex I (0.024 mmol),  $[Fe_4S_4(SR)_4]^{2-}$  (0.048 mmol, generated in situ), and  $S_2O_4^{2-}$  (initial concentration, 0.50 mmol), in a total reaction volume of 2 ml (solvent: CH<sub>3</sub>OH borate buffer, 1:1), pH 9.6. The reaction temperature was 27°; the yields were determined after 18 hr of reaction.

The rate of  $C_2H_2$  reduction increases with increasing concentration of added  $[Fe_4S_4(SR)_4]^{2-}$  almost linearly (Figure 2), affording  $C_2H_4$  as the main product with only traces of  $C_2H_6$ . A time-yield plot from a typical experiment is reproduced in Figure 3.

Ferredoxin Model Compounds as Stoichiometric Reducing Agents. The anions  $[Fe_4S_4(SR)_4]^{z-}$  can be generated in solution in their different oxidation states by combining stoichiometric amounts of iron salt (e.g., mixtures of FeCl<sub>2</sub> and FeCl<sub>3</sub>) with LiSR and Li<sub>2</sub>S in anhydrous methanol. If a mixture of FeCl<sub>2</sub> and FeCl<sub>3</sub> is employed in the molar ratio of 1:1, the anions with z = 2 result according to eq 1.

$$2Fe^{2+} + 2Fe^{3+} + 4RS^{-} + 4S^{2-} \rightarrow [Fe_4S_4(SR)_4]^{2-}$$
 (1)

Crystalline salts of these anions can be isolated by the addition of, e.g.,  $[(n-C_4H_9)_4N]^+I^-$ . Solutions of the anions with z = 3 are obtained similarly, except that the proportion of Fe<sup>2+</sup> to Fe<sup>3+</sup> is increased to 3:1. The fully reduced anions with z = 4 may be expected to form if the Fe is added exclusively in the ferrous state. Formally, at least, even the cluster anions with z = 1 or 0 should be accessible in this

Tano, Schrauzer / Nitrogenase and Hydrogenase Reactions



Figure 4. Absorption spectrum of a solution of reduced  $[Fe_4S_4(SR)_4]^{z-}$  (z = 4,  $R = n-C_3H_7$ ) or related species obtained by the combination of equivalent amounts of  $Fe^{2+}$ ,  $S^{2-}$ , and  $RS^{-}$  in CH<sub>3</sub>OH (--). Exposure to 1  $\mu$ l of O<sub>2</sub> changes the spectrum to that of authentic  $[Fe_4S_4(SR)_4]^{2-}$  (---) within 30 min at 27°.



**Figure 5.** Reduction of  $C_2H_2$  to  $C_2H_4$  with complex I and stoichiometric amounts of anions  $[Fe_4S_4(SR)_4]^{z-}$  or equivalent species present in solutions containing Fe, S<sup>2-</sup>, and RS<sup>-</sup> at the molar ratios of 1:1:1, plotted as a function of the per cent Fe<sup>2+</sup> at t = 0. Reaction solutions contained, in a total volume of 2 ml: complex I, 0.006 mmol; Fe, S<sup>2-</sup>, RS<sup>-</sup>, each 0.12 mmol. The solvent was a 1:1 mixture of CH<sub>3</sub>OH and 0.2 F pH 9.6 borate buffer in H<sub>2</sub>O. The C<sub>2</sub>H<sub>2</sub> pressure at t = 0 was 1 atm, the reaction temperature, 27°. Yields were determined after 18 hr of reaction. Insert shows C<sub>2</sub>H<sub>4</sub> yield plotted against the square of the percentage of Fe<sup>2+</sup>.

fashion by increasing the proportion of  $Fe^{3+}$  to  $Fe^{2+}$ . However, the  $Fe^{3+}$  may cause oxidation of  $RS^-$  to  $R_2S_2$ , giving rise to the formation of the cluster anion with z = 2 instead. Investigating the reducing power of mercaptoiron sulfides with respect to the Mo<sup>red</sup>-catalyzed reduction of  $C_2H_2$  to  $C_2H_4$ , we employed solutions of  $RS^-$ ,  $S^{2-}$ , and Fe salt con-



Figure 6. Dependence of the yield of  $C_2H_4$  on the concentration of complex I in the presence of  $[Fe_4S_4(SR)_4]^{4-}$  or equivalent species containing  $Fe^{2+}$ ,  $S^{2-}$ , and  $RS^{-}$  at the molar ratios of 1:1:1. Conditions as given in legend to Figure 4.

taining 0-100% Fe<sup>2+</sup> regardless of complications such as mentioned above. Salts of the anions with z = 3 or 4 proved difficult to isolate due to their high solubility and oxygen sensitivity. In the presence of added  $[(n-C_4H_9)_4N]^+I^-$ , the salts of the anions with z = 2 precipitate from the solutions of the reduced cluster anions upon exposure to limiting amounts of O<sub>2</sub>. The oxidation was also followed spectrophotometrically (Figure 4). The results in Figure 5 demonstrate the presence of powerful reducing species in solutions containing more than 50% Fe<sup>2+</sup>, which is ascribed to the formation of Fe<sub>4</sub>-cluster anions with z = 3 and 4. The yield of  $C_2H_4$  from  $C_2H_2$  in the presence of molybdenum catalyst increases nonlinearly with the concentration of Fe<sup>2+</sup> under otherwise identical conditions. Plotted as a function of  $[Fe^{2+}]^2$ , a linear relationship is observed (see insert in Figure 5). This result is consistent with the reaction stoichiometry in eq 2.

$$C_2H_2 + 2H^+ + 2 [e^-] \rightarrow C_2H_4$$
 (2)

The anions  $[Fe_4S_4(SR)_4]^{3-,4-}$  presumably function as oneelectron reducing agents, although the possibility of electron transfer steps involving two electrons also exists. The ion with z = 2, however, is not a reductant in the system of our study.

In Figure 6, the yield of  $C_2H_4$  from  $C_2H_2$  is shown to depend linearly on [complex I]<sup>1/2</sup>. This demonstrates that the active reduced species Mo<sup>red</sup> is a mononuclear rather than dimeric species, in accord with our previous studies with the N<sub>2</sub>-ase model systems. It is furthermore apparent that the reactions of Mo<sup>red</sup> with  $C_2H_2$  are basically the same as in the absence of mercaptoiron sulfides, the latter obviously do not participate directly in the reduction of the substrate.

**Hydrogen Evolution.** Only traces of  $H_2$  are formed in systems composed of complex I and  $S_2O_4^{2-}$  in pH 9.6 buffered aqueous solution. The addition of catalytic amounts of  $[Fe_4S_4(SR)_4]^{2-}$  does not stimulate  $H_2$  evolution under these conditions, a fact which is primarily attributed to the instability of the ferredoxin model compounds in aqueous alkaline media. However, in the experiments with the reduced ferredoxin model compounds in methanol solution, some  $H_2$  was detectable even in the presence of  $C_2H_2$  as the substrate. Subsequent experiments revealed that systems containing  $Fe^{2+}$ ,  $S^{2-}$ , and  $RS^{-}$  in the ratios of 1:2:6 in

Journal of the American Chemical Society / 97:19 / September 17, 1975

**Table II.** Hydrogen Evolution in Systems Containing  $Fe^{2+}$ ,  $S^{2-}$ , and RS<sup>-</sup>, With and Without Complex I<sup>a</sup>

| No. | Components                                  | Hydrogen<br>vields <sup>b</sup> in systems (µmol) |       |  |
|-----|---------------------------------------------|---------------------------------------------------|-------|--|
|     |                                             | I                                                 | II    |  |
| 1   | LiSR, Li,S, FeCl, (1:1:1)                   | 0.26                                              | 0.031 |  |
| 2   | 1 + 0.06 mmol of complex I                  | 0.30                                              | 0.063 |  |
| 3   | 1 + 0.12 mmol of complex I                  | 0.36                                              | 0.065 |  |
| 4   | 1 + 0.18 mmol of complex I                  | 0.42                                              | 0.060 |  |
| 5   | 1 + 0.24 mmol of complex I                  | 0.47                                              | 0.054 |  |
| 6   | 5 at 1 atm of C <sub>4</sub> H <sub>2</sub> | 0.28                                              | 0.018 |  |
| 7   | 5 at 1 atm of CO                            | 0.46                                              | 0.050 |  |
| 8   | 5 at 1 atm of N <sub>2</sub>                | 0.37                                              | 0.045 |  |

<sup>*a*</sup> Reaction solutions in column I contained Fe:S<sup>2</sup>-:RS<sup>-</sup> in the molar ratios of 1:2:6, in a total volume of 2 ml: 0.72 mmol of LiSR ( $R = n-C_3H_2$ ), 0.24 mmol of Li<sub>2</sub>S, and 0.12 mmol of FeCl<sub>2</sub>, and varying amounts of complex I. Reaction solutions in column II contained Fe:S<sup>2</sup> ¬RS<sup>-</sup> in the ratios of 1:1:1 under otherwise identical conditions: solvents, H<sub>2</sub>O-CH<sub>3</sub>OH, 1:1; reaction temperature, 27°. <sup>*b*</sup> After 1 hr of reaction.

methanol produce increasing amounts of  $H_2$  as more complex I is added. A small stimulation of  $H_2$  evolution in analogous systems containing  $Fe^{2+}$ ,  $S^{2-}$ , and  $RS^{-}$  in the ratios of 1:1:1 was also observed. Some  $H_2$  is even formed in the absence of complex I (Table II), suggesting the existence of both iron- and molybdenum-dependent pathways of  $H_2$  evolution. No inhibition of  $H_2$  production by CO was observed, but  $C_2H_2$  as well as  $N_2$  caused partial inhibition if present at 1 atm of pressure.

A systematic study of  $H_2$  evolution in Mo-free systems containing only  $Fe^{2+}$ ,  $S^{2-}$ , and  $RS^-$  revealed that maximum yields of  $H_2$  are formed if the three components are in the molar ratio of 1:2:6 (Figure 7). Such systems are homogeneous and evolve  $H_2$  continuously for about 12 hr (Figure 8). (The total yield of  $H_2$  approaches 20% relative to the amount of  $Fe^{2+}$  present, after 24 hr of reaction at 27°.) Gas chromatographic analysis of the reaction solutions indicated that  $R_2S_2$  is formed as a by-product, suggesting that  $RS^$ functions as the source of electrons for  $H^+$  reduction. The overall reaction catalyzed by the active iron complex thus may be formulated according to eq 3.

$$2H^+ + 2RS^- \longrightarrow H_2 + R_2S_2$$
 (3)

We have been unable thus far to obtain  $H_2$ -evolving systems of similar or higher efficiency using  $S_2O_4^{2-}$  as the reducing agent in aqueous or aqueous-methanolic solutions; the iron complex(es) responsible for  $H_2$  production are sensitive both to water and alkali. However, work is currently in progress to modify the systems and to enhance their resistance to water. Our aim is to find active hydrogenase model systems operating under more nearly biological conditions.

#### Discussion

Ferredoxin Model Compounds as Electron Transfer Catalysts. Although the structure of the non-heme iron components in N<sub>2</sub>-ase has not yet been elucidated, it appears highly probable that individual units of  $[Fe_4S_4(S-protein)_4]$  clusters are present which serve primarily as storage compartments of electrons for the reduction of the molybdenum active site. The experiments with N<sub>2</sub>-ase model systems in the presence of Holm's ferredoxin model compounds demonstrate that the reduced cluster anions  $[Fe_4S_4(SR)_4]^{z-}$  (z = 3 or 4), or equivalent species, convert the oxidized forms of the molybdothiol catalyst efficiently into the active reduced form Mo<sup>red</sup>.

The available evidence suggests that the conversion of



Figure 7. Yields of  $H_2$  from systems containing  $Fe^{2+}$  (0.12 mmol) and LiSR (0.72 mmol) as a function of [S<sup>2-</sup>], as expressed by the  $Fe^{2+}/S^{2-}$  ratios. Total reaction volume was 2 ml. Solvent was anhydrous CH<sub>3</sub>OH. Yields of  $H_2$  were measured after 30 min of reaction at 27°.



Figure 8. Dependence of the yield of  $H_2$  as function of time. Reaction solutions contained Fe<sup>2+</sup> (0.12 mmol), RS<sup>-</sup> (0.72 mmol), and S<sup>2-</sup> (0.24 mmol), respectively, in a total volume of 2.0 ml of anhydrous CH<sub>3</sub>OH.

 $Mo^{ox}$  to  $Mo^{red}$  requires two electrons which are either transferred in successive one-electron steps or perhaps simultaneously. The overall reaction is schematically represented in eq 4, for  $C_2H_2$  as the substrate. The structure of

$$Fe_{4}S_{4}(SR)_{4}^{\text{red}} \longrightarrow Mo^{\text{red}} C_{2}H_{2} + 2H^{+}$$

$$Fe_{4}S_{4}(SR)_{4}^{\text{ox}} \longleftarrow C_{2}H_{4}$$
(4)

the non-heme iron cluster units in  $N_2$ -ase remains to be established until a more detailed mechanism of electron transfer can be formulated.

Molybdenum Dependent  $H_2$  Evolution. The observed evolution of  $H_2$  in systems containing stoichiometric amounts of reduced ferredoxin model compound and complex I as the catalyst shows that  $Mo^{red}$  is capable of discharging protons of the medium. Two mechanisms by which this can occur are shown in Scheme I. The species  $Mo^{red}$  possesses

Scheme I



the properties of a metallonucleophile and thus could form an unstable hydride or dihydride on protonation. The formation of a monohydride and the generation of  $H_2$  via path (a) in Scheme I could explain why CO is not inhibitory.

Tano, Schrauzer / Nitrogenase and Hydrogenase Reactions

Scheme II



However, with  $C_2H_2$ , inhibition of  $H_2$  evolution is observed since this substrate is bound in the side-on-fashion (Scheme II). Hydrogen evolution according to path b in Scheme I cannot be entirely excluded, however.

**Iron-Dependent H<sub>2</sub> Evolution.** The only bacterial hydrogenase which thus far has been obtained in reasonably pure form is that of *Clostridium pasteurianum*. It is an iron-sulfur protein of molecular weight 60,500 containing Fe<sup>2+</sup>,  $S^{2-}$ , and Cys-SH in the approximate ratios of 12:~12:  $\sim$ 12.<sup>4</sup> The enzyme as isolated is paramagnetic and exhibits a "1.94"-type EPR signal which disappears on oxygenation and reappears on exposure to  $H_2$ . Neither the mechanism of  $H_2$  uptake or  $H_2$  formation is as yet understood. It appears likely that the H-H bond undergoes heterolytic, rather than homolytic cleavage, and evidence has been presented for equilibration of the bound hydrogen with the protons of the solvent. The nature of the active site is unknown; current mechanistic postulates assume a reaction of  $H_2$  with centers containing either one or two iron-sulfur atoms. The present work shows that ferredoxin-type Fe<sub>4</sub> cluster anions do not provide a model for hydrogenase. Instead, systems containing  $Fe^{2+}$ ,  $S^{2-}$ , and  $RS^{-}$  in the molar ratios of 1:2:6 were found to release  $H_2$  most efficiently. It thus appears that  $H_2$ evolution is associated with the presence of transient, unidentified mercaptoiron sulfide complexes. Work is in progress to characterize these species with the aim to develop functional models of hydrogenase and to establish their mechanism of action.

## **Experimental Section**

Reagents and Starting Materials. All commercially available reagents and chemicals were "Reagent" or "Analytical" grade and were used without further purification. The  $Mo^{5+}$  complex of L(+)-cysteine (complex I) was prepared according to published methods and was purified by recrystallization from water-methanol. The tetra-*n*-butylammonium salt of  $[Fe_4S_4(SR)_4]^{2-}$  (R = n-C<sub>3</sub>H<sub>7</sub>) was synthesized according to ref 2. Preparation of the Fe<sub>4</sub>cluster anions in situ is outlined below.

Assays. The reduction of C<sub>2</sub>H<sub>2</sub> to C<sub>2</sub>H<sub>4</sub> was followed by gasliquid chromatography using a Hewlitt-Packard Series 700 laboratory gas chromatograph equipped with a phenylisocyanate-porasil, 80-100 mesh column. Hydrogen was detected by means of a column of 6 ft length, filled with molecular sieve (5A). Assays for  $C_2H_4(C_2H_2)$  as well as those for  $H_2$ , were performed at the operating temperature of 27°

Typical Experimental Procedures. In the following sections typi-

cal examples for all essential experiments are outlined. Further details on reaction conditions, quantities of reactants, etc., are given in the figures and tables.

(a) Acetylene Reduction with  $S_2O_4^{2-}$  as the Reductant. Reaction vials of 25 ml volume were equipped with rubber septum caps and filled with water-washed C<sub>2</sub>H<sub>2</sub> at 1 atm of pressure. Into these vials were injected: an aqueous solution of complex I in 0.2 F, pH 9.6 borate buffer (1.5 ml); a methanol solution containing the ion  $[Fe_4S_4(SR)_4]^{2-}$  at concentrations specified (1.4 ml); and at t = 0, a freshly prepared 1.2 M solution of Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> in 0.2 M pH 9.6 borate buffer (0.5 ml). For analysis of gas-liquid chromatography, 0.2-ml gas samples were withdrawn at convenient time intervals, initially every 10 min.

(b) Acetylene Reduction with Stoichiometric Amounts of Fe4 Cluster Complexes. Stock solutions of the required components were prepared as follows: solution I, anhydrous FeCl<sub>3</sub> (4.9 g, 30 mmol) dissolved in 50 ml of anhydrous methanol; solution II, anhydrous FeCl<sub>3</sub> (4.9 g) in 50 ml of anhydrous methanol, subsequently reduced to FeCl<sub>2</sub> by the addition of 3 g of Fe powder; solution III, anhydrous lithium sulfide, Li2S (Research Organic/Inorganic Chemical Corporation, fresh bottle), 1.38 g (30 mmol), in 50 ml of anhydrous CH<sub>3</sub>OH; solution IV, lithium methoxide (3.42 g, 90 mmol), dissolved in 38 ml of anhydrous methanol, followed by injection of 6.85 g (90 mmol) of pure, distilled n-C<sub>3</sub>H<sub>7</sub>SH. All stock solutions were stored under argon.

To prepare solutions containing the ion  $[Fe_4S_4(SR)_4]^{2-}$ , 3.0 and 3.0 ml of solutions I and IV, respectively, were injected into a vial, followed by 3 ml of solution III. Solutions containing the ion  $[Fe_4S_4(SR)_4]^{3-}$  were generated similarly except that mixtures of solutions I and II, containing 75% FeCl2 and 25% FeCl3, were employed. The fully reduced Fe<sub>4</sub> clusters  $[Fe_4S_4(SR)_4]^{4-}$ , or equivalent mercaptoiron sulfides of Fe2+, were generated as described above, using Fe<sup>2+</sup> salt only (solution II).

Iron Dependent Hydrogen Evolution. An iron-dependent evolution of hydrogen can be observed in methanolic solutions containing Fe<sup>2+</sup>, S<sup>2-</sup>, and RS<sup>-</sup> in various ratios, optimally at the ratios of 1:2:6 (see Figures 6 and 7). The most active systems result if the calculated amount of Fe<sup>2+</sup> in anhydrous methanol (e.g., solution II, see above) is injected into a methanolic solution of  $S^{2-}$  and RS<sup>-</sup> containing both components in the ratio of 2:6 relative to  $Fe^{2+}$ . The systems are sensitive to water and alkali. It is essential, furthermore, to use freshly prepared solutions of S<sup>2-</sup> for these experiments and not to change the order of reagent addition given above.

Acknowledgments. This work was supported by Grant GP 28485X of the National Science Foundation, and, in part, by funds obtained from Climax Molybdenum Company. We are also indebted to Mitsubishi Chemical Industries, Ltd. for granting a leave to K. Tano, and other support.

#### **References and Notes**

- (1) G. N. Schrauzer, J. Less-Common Met., 36, 475 (1974), and references cited therein.
- (2) G. N. Schrauzer, G. W. Klefer, K. Tano, and P. Doemeny, J. Am. Chem.
- (2) G. N. Schrauzer, G. W. Kleier, K. Tano, and F. Doemeny, J. Am. Crom. Soc., 96, 641 (1974).
   (3) R. W. F. Hardy and E. Knight, Jr., *Prog. Phytochem.*, 1, 407 (1968).
   (4) L. E. Mortenson and J.-S. Chen in "Microbial iron Metabolism", J. B. Nei-lands, Ed., Academic Press, New York, N.Y., 1974, pp 231–282, and ref-erences cited therein; J. S. Chen and L. E. Mortenson, *Biochim. Biophys.* 1027 (1974). Acta, 371, 283 (1974).
- (5) T. Herskowitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips, and J. F. Welher, *Proc. Nat. Acad. Sci. U.S.A.*, **69**, 2437 (1972).
  (6) B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, *J. Am. Chem.*
- Soc., 95, 3523 (1973).
- (7) B. V. Pamphilis, B. A. Averill, T. Herskowitz, L. Que, Jr., and R. H. Holm, J. Am. Chem. Soc., 96, 4159 (1974).